版權歸原作者所有,如有侵權,請聯系我們

寫錯的字用膠條粘下來,石墨烯也是這樣發(fā)現的

科學信仰
泛科學領域創(chuàng)作者??茖W是一種規(guī)律,信仰是一種態(tài)度。
收藏

石墨烯作為一種新型材料備受追捧,很多不同領域的產品制造商都在想盡辦法蹭石墨烯的熱度,那么到底什么是石墨烯呢,這種材料有何特別之處呢,那些蹭熱度的產品是不是真的呢?

在整個宇宙之中,所有的物質都是由不同的元素所構成的,但同一種元素卻并非只能構成同一種物質,元素通過不同的結構進行組合就能夠形成不同的物質。以碳元素為例,當一個碳原子周圍有四個碳原子,它們以共價鍵的方式相結合,且周圍的四個碳原子與中心的碳原子形成一個正四面體結構的時候,就組成了一種物質,我們叫它鉆石。因為碳原子之間是以很強的共價鍵結合的,所以鉆石的硬度很高,又被稱為金剛石。鉆石的硬度很高,但另一個同樣由碳原子所組成的物質卻十分光滑,它就是石墨。

當碳原子通過化學鍵結合成諸多正六邊形的結構,就組成了一個層,很多層疊在一起就組成了石墨。

在石墨中,同一層的碳原子依靠化學鍵結合,而層與層之間卻沒有化學鍵,它們是依靠原子間的弱堿性電性吸引力結合在一起的,所以同一層碳原子的結合非常牢固,而層與層之間則是可以滑動的,而這種層與層之間的滑動就是石墨光滑特性的根源。那么什么是石墨烯呢?很簡單,石墨烯就是單層的石墨,如果將石墨的一層結構單獨拿出來,那就是石墨烯。

石墨烯的發(fā)現是在2004年,而在此之前,科學家們一直斷定類似于石墨烯的物質是不會存在的,為什么呢?原因很簡單,我們身處在一個三維空間之中,所有的事物都是三維結構的,像石墨烯這種二維結構的物質不可能存在于三維空間之中。

一張紙是不是二維結構呢?當然不是,紙是三維結構物質,它是立體的,擁有長寬高,只不過高度,也就是厚度很薄而已。

但石墨烯就不同了,它基本上可以說是一種二維結構物質,石墨烯就是單層石墨,它的結構是平面的,厚度為一個原子,那么這一個原子到底有多厚呢?我們知道,納米這個單位是很小的,一納米就等于10∧-9米,而單層石墨的厚度為0.355納米,很薄很薄,薄得沒有辦法再薄。

二維結構的物質無法存在于三維空間之中,這是一個常識,但有人就偏偏不信邪。這兩個不信邪的人,一個叫做安德烈·海姆,另一個叫做諾沃肖洛夫,他們都來自于英國曼徹斯特大學。這兩個人就想啊,一定有什么辦法能夠獲得單層的石墨,畢竟石墨的結構具備這種潛力,同層原子的結構牢固,而層與層之間卻沒有化學鍵相連。

那么怎么能把單層石墨弄出來呢?先別想那么多,先盡量把石墨弄薄再說,于是他們采用了一個非常簡單的辦法,就是用膠條粘。

當我們在紙上寫錯字的時候,就會用膠條把錯字粘下來,這種技術早在三四十年以前就出現了,而我們粘下來的其實是紙張的表面一層。膠條能夠粘下紙上的表層,自然也能粘下石墨,于是一層薄薄的石墨被粘下來了,不過此時的石墨距離單層石墨還有十萬八千里,沒關系,再粘,用另一個膠條把粘有石墨的膠條再粘一下,就又得到了更薄的一層石墨,如此往復,最終就獲得了單層石墨,也就是石墨烯。

別看發(fā)現石墨烯的過程似乎并不太過復雜,但這一發(fā)現卻斬獲了2010年的諾貝爾獎,原因就是人類首次在三維空間中發(fā)現了二維結構物質。

那么石墨烯這種材料到底有何特別之處呢?

石墨烯具有很多優(yōu)點,由于碳原子之間通過化學鍵結合相當牢固,所以石墨烯是一種又薄強度又大的物質,且具有很好的拉伸性。再者,石墨烯的導電性能和導熱性能都十分優(yōu)異,金屬具有良好的導電性,而在金屬之中導電性能最好的就是銀,而石墨烯的導電性比銀還要好。

石墨烯有如此眾多的好處,在實際應用中又能做些什么呢?相必大家一定都聽過石墨烯電池,為什么要用石墨烯做電池呢?我們現在很多電子設備中所使用的電池都是鋰電池,鋰電池的缺點就是電阻大,所以如果電流過大,電池就會發(fā)熱燒毀,因為給手機充電必須控制電流,控制了電流,充電速度自然就慢。而石墨烯電阻很低,導電性很好,如果用石墨烯制作電池,那么就可以用很大的電流來進行充電,那充滿電就是分分鐘的事了。不過包括石墨烯電池在內,關于石墨烯在各個領域的實際應用還尚需時日,從研制到研制成功,從研制成功到投入實際應用,這個過程還是很長的。

更多內容關注公眾號“無上科學信仰”。